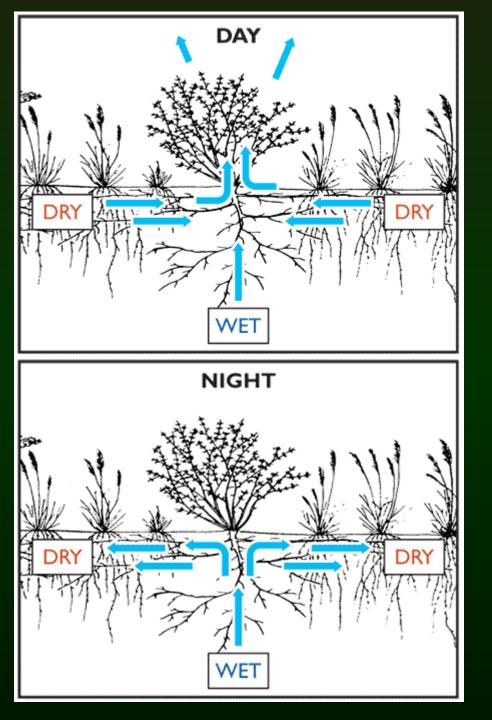
Tree Physiology and Disease Nov 2016

Steven Swain Environmental Horticulture Advisor UCCE Marin & Sonoma Counties


About this presentation ...

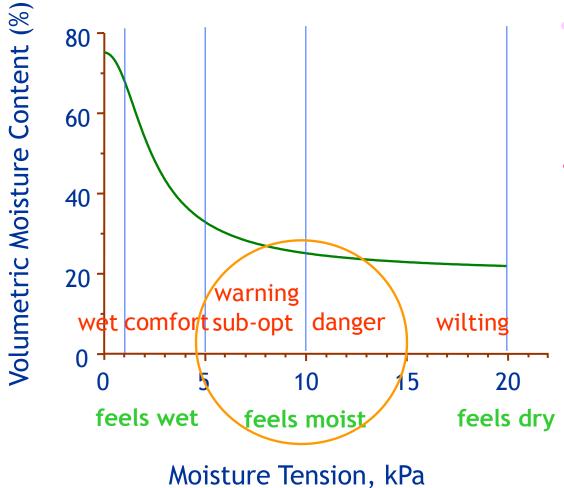
- Mostly it's about big perennials
 - Expensive, and difficult to replace
 - Property value
 - Extensive root systems have an impact on the landscape
 - We'll be talking about trees, but many of the concepts will apply to other plants too

Water is Life

- Plant Physiology: All of the biological processes that allow a plant to function
 - Plants make their food (sugars) from sunlight
 - Red and blue light drive two different photosystems
 - Green light reflected
- Plants metabolize these same sugars to live, grow, and reproduce
 - Must live within an energy budget
- All of this requires water
 - A lack of water requires tradeoffs

Trees as water managers

- Hydraulic lift
- Uptake from sinker roots during day
- Redistribution via
 mycorrhizae at night
- Soils 12" down stay moist
- Trees are usually the most valuable plants in a landscape
- Trees also alter internal water flows during fire


People as Water Managers

- Usually pretty good
 ... but not always
- All equipment fails
 - Underground
 - Irrigation at dawn

 Watering problems are among the most common landscape maladies

Moisture Retention Curve

- How people are able to sense moisture levels
- Note that clay soils may feel moist, but may already be suboptimal or dangerously low in water!

Drought Effects (direct)

- Stomata close
- Cellular water loss
 - Leaves curl, wilt, and/or sunburn
 - Cell membranes pull away from walls

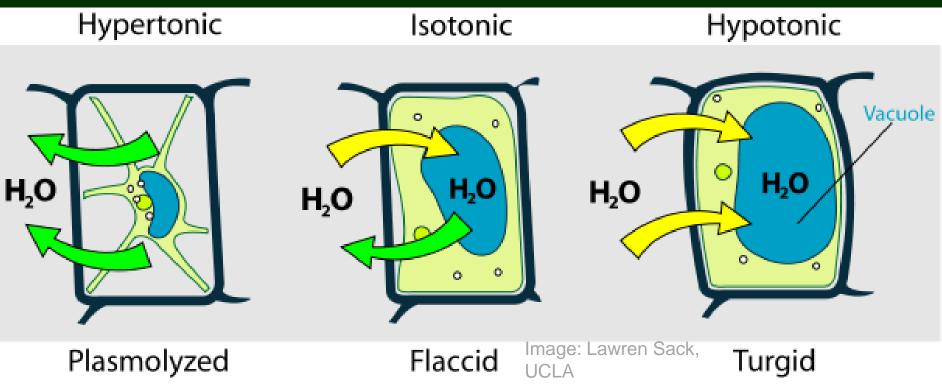


Photo courtesy Igor Lacan, UCCE Advisor

Drought Response

- Smaller leaves
- Abbreviated growth
- Trees "remember"
- Next years:
 - Fewer leaves
 - Budget (sugar) reallocation to roots
- "Stunted" above ground
 - Maybe bigger below ground!

Drought Response

- Feedback loops between
 - genes & environment
 - metabolism
 - production of:
 - drought specific metabolites
 - chemical defenses
 - may affect tree for life
- Water is key for sugar production
- No water, no defense
 - Sunburn
 - Pests & pathogens
 - Fire

.... e.g. ...

- Redwood
- Mid summer
- Oakland
- Interior needles browning
- One picture
- Pathogen
 - Botryosphaeria?
 - Phytophthora ramorum?
 - Cercospora?
- Insect
 - Something chewing interior twigs?
- Abiotic
 - Drought stress?

Leaf (and needle) strategies

- Deciduous
 - One season
 - Metabolically "cheap" to produce
 - Leaf pathogens gone at end of year
 - Plant must store next year's leaf energy
 - No photosysnthesis during dormancy
 - Leaf shed very obvious
 - All at once
 - Fall
 - Summer

Leaf (and needle) strategies

- Evergreen
 - One or more years
 - Metabolically "expensive" to produce
 - Leaf pathogens have year-round food
 - Lower energy storage requirement
 - No dormancy, metabolism possible year round
 - Leaf shed not so obvious
 - Older leaves only
 - Summer
 - Fall
 - Spring

Shedding variation for evergreens

- Timing of leaf drop
- Number of leaves
- Genetic variation from tree to tree
- Year to year variation in growth
 - Rainfall
 - Temperature
 - Sunlight
- More leaves may be shed in good growth years
 - Not intuitively obvious

Case study: Woodacre

Cercospora?

© 2003 Regents of the University of Californ

Case study: Novato

Botryosphaeria (Diplodia)

- Opportunistic
- Huge host range
 - Oaks (Diplodia)
 - Redwoods, Sequoias, other conifers (Botryosphaeria)
 - Madrone, Manzanitas
 - … and on …
- Improve growing conditions
- Consult UC IPM

Botryosphaeria (Diplodia)

- Opportunistic
- Huge host range
 - Oaks (Diplodia)
 - Redwoods, Sequoias, other conifers (Botryosphaeria)
 - Madrone, Manzanitas
 - … and on …
- Improve growing conditions
- Consult UC IPM

Phytophthora

- Many species thrive in warm, wet soil
 - e.g., P. cinnamomi
 - Many more being discovered
 - Will attack "healthy" trees
- All require water to infect
- Thrive in "Drench and Drought" irrigation
 - Know your plants
 - Monitor your soil
 - Let things dry without stressing the plant

Armillaria (oak root rot)

- Starts as an opportunist
 As it grows, it gets meaner
- Common in California soils
- Likes:
 - Summer irrigation
 - Consistently warm moist conditions
 - Droughts, hot summers
 - Vineyards
 - Lawns
 - Injured roots
 - Especially larger roots
- Fungicides ineffective

Armillaria

- "Oak Root Rot"
- White mycelia
- Usually bark is soft where disease is advanced
- Smells like fresh mushrooms
 - Often subtle
- Sometimes clumps of tan mushrooms
 - White spores

Armillaria Management

- ... is water mgmt.
 - Timing, amount, and location
 - Let things dry
- Chemical Tx not shown effective
 - Despite labels
- Removal
- Air spade
 - If caught early enough

Oak Twig Blight

- Cryptocline cinerescens
- California native
- Likes warmth, high humidity
 - Nearby irrigated lawns

Oak Twig Blight

- Black pimple like growths on recently killed twigs
- Prune out in dry weather
- Reduce humidity if possible in summer

Beetles that attack oaks

- Bark & ambrosia beetles
 - Pin-sized boring holes
 - Talcum-fine boring dust
 - Wood colored
 - (ambrosia beetle)
 - Rust colored
 - (western oak bark beetle)

Ambrosia beetle

- California native
- Kills drought stressed oaks
- No curative treatment
- Farms a fungus
 - Nee: Ambrosiella (hence the name)
 - Now: Rafaella

Ambrosia beetle

- The last part of SOD
 - Doesn't need
 Phytophthora to kill trees
- See and smell drought stress
 - Outbreaks in drought
 - Deep, infrequent summer water
 - Mulch within drip-line
 - Preventative pyrethroid insecticides?
- Tunnels may flux

Ambrosia beetle

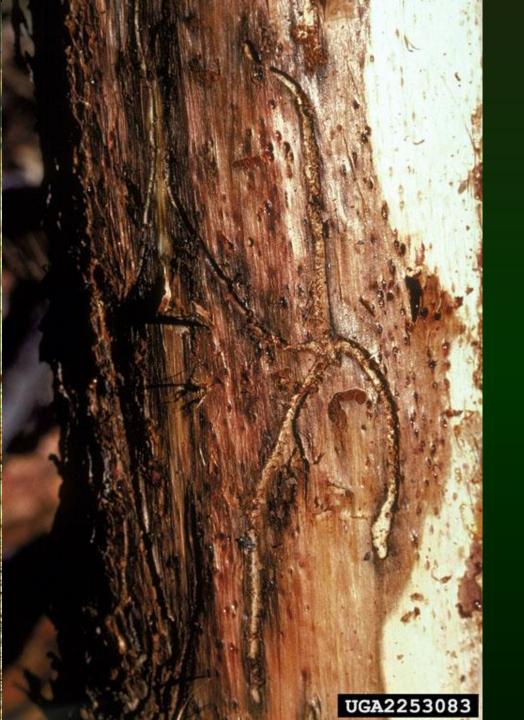
- California native
- Farms the Ambrosiella fungus
- They kill drought stressed oaks
- No curative treatment

Oak bark beetle

- Similar lifecycle to oak bark beetles
 - See and smell drought stress
 - Outbreaks in low rainfall years
 - Deep, infrequent summer water
 - Preventative pyrethroid insecticides
- Feed on living cambium

Oak bark beetle

- Tunnels may flux
 - New fungal associate
 Geosmithia pallida
 - Similar to alcohol flux
 - Deadlier (?)
 - Wikipedia says so ...
 - Not so deadly in the Bay Area
 - Interaction between stress & environment?
 - Check origin of foam
 - Tunnel: Oak bark beetle (?)

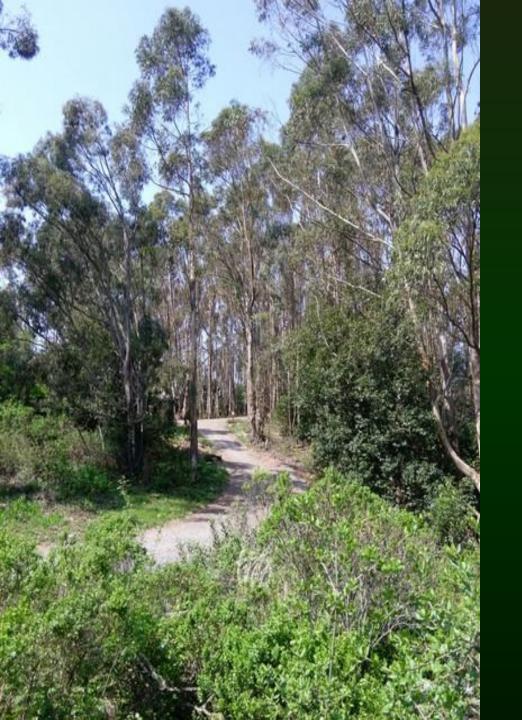

Others?

- Urban Forestry Associates
 - San Rafael find in maple
 - With a yeast (?)
- Breyer Vineyard Management
 - Alder find in Glen Ellen
 - With Neofusicoccum

- Monterey pine
 - Five spined lps
 Ips paracofusus
 - Attack higher in the canopy
 - Distinctive Y shaped galleries
 - Red turpentine beetle
 Dendroctonus valens
 - Red tunnel entrances at tree base
 - Turn white with age
- Provide summer water

- Monterey pine
 - Red turpentine beetle
 Dendroctonus valens
 - Red tunnel entrances at tree base
 - Turn white with age
 - Five spined lps
 Ips paracofusus
 - Attack higher in the canopy
 - Distinctive Y shaped galleries
- Provide summer water
- Mulch / compost

- Douglas fir invades oak woodlands in normal years
 - Saplings don't require a lot of water
 - Big trees do



- Douglas fir engraver Dendroctonus brevicomus
 - Attacks Douglas fir on sub-optimal sites
 - Outbreaks occur in dry years
 - Almost routine occurrence in California
 - Natural stand-in for fire

- ... another thing about drought.
- Fires are often more intense during dry years
 - Diseased & weaker trees weeded out
 - Thirstier species removed
 - Less competition for remaining water
- Thinning understory can reduce water stress and fire risk
- Fire:
 - Not so good for trees
 - Excellent for forests

Copyright © 2003 Regents of the University of California

"Fire Safe"

- No such a thing as a fire safe plant
 - Even iceplant can burn
- Maintenance, not species selection, is the key to managing fire risk
 - Avoid fire prone species
 - … and yet still …

Scripps Ranch, San Diego, 2003. Image courtesy NY Times

Trees & shrubs are not passive

- They actively manage water, pests ...
- Pathogens need an angle to survive
 - Opportunistic pathogens and pests attack stressed trees (we give 'em plenty)
 - More serious pathogens attack even strong plants, but usually under specific circumstances
 - Warm, moist soils; etc.
- Diagnosing the problem
 - The disease triangle (people as pathogens?)
 - UC IPM (http://ipm.ucanr.edu/)

Management Recommendations

- Assess water status 12" below grade

 Hydraulic lift
- Let the tree tell you how it's doing
 - Look at current growth
 - Effects occur over years
 - A tree is the physical manifestation of a dance between its genes, the environment, and time

Thanks!

UC IPM: <u>http://www.ipm.ucdavis.edu/</u>

Presentation on-line at: <u>http://ucanr.edu/MarinIPM</u>
Steven Swain: 415 473 4226 <u>svswain@ucanr.edu</u>

